In vivo volumetric imaging of chicken retina with ultrahigh-resolution spectral domain optical coherence tomography

نویسندگان

  • Alireza Akhlagh Moayed
  • Sepideh Hariri
  • Eun Sun Song
  • Vivian Choh
  • Kostadinka Bizheva
چکیده

The chicken retina is an established animal model for myopia and light-associated growth studies. It has a unique morphology: it is afoveate and avascular; oxygen and nutrition to the inner retina is delivered by a vascular tissue (pecten) that protrudes into the vitreous. Here we present, to the best of our knowledge, the first in vivo, volumetric high-resolution images of the chicken retina. Images were acquired with an ultrahigh-resolution optical coherence tomography (UHROCT) system with 3.5 µm axial resolution in the retina, at the rate of 47,000 A-scans/s. Spatial variations in the thickness of the nerve fiber and ganglion cell layers were mapped by segmenting and measuring the layer thickness with a semi-automatic segmentation algorithm. Volumetric visualization of the morphology and morphometric analysis of the chicken retina could aid significantly studies with chicken retinal models of ophthalmic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography.

An ultrahigh-speed spectral domain optical coherence tomography (SD-OCT) system is presented that achieves acquisition rates of 29,300 depth profiles/s. The sensitivity of SD-OCT and time domain OCT (TD-OCT) are experimentally compared, demonstrating a 21.7-dB improvement of SD-OCT over TD-OCT. In vivo images of the human retina are presented, demonstrating the ability to acquire high-quality s...

متن کامل

Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm Citation

The performance and imaging characteristics of ultrahigh speed ophthalmic optical coherence tomography (OCT) are investigated. In vivo imaging results are obtained at 850nm and 1050nm using different configurations of spectral and swept source / Fourier domain OCT. A spectral / Fourier domain instrument using a high speed CMOS linescan camera with SLD light source centered at 850nm achieves spe...

متن کامل

Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.

PURPOSE To demonstrate high-speed, ultrahigh-resolution optical coherence tomography (OCT) for noninvasive, in vivo, three-dimensional imaging of the retina in rat and mouse models. METHODS A high-speed, ultrahigh-resolution OCT system using spectral, or Fourier domain, detection has been developed for small animal retinal imaging. Imaging is performed with a contact lens and postobjective sc...

متن کامل

Ultrahigh speed spectral / Fourier domain ophthalmic OCT imaging

Ultrahigh speed spectral / Fourier domain optical coherence tomography (OCT) using a CMOS line scan camera with image acquisition rates of 70,000 312,500 axial scans per second is investigated. Several design configurations are presented to illustrate design trade-offs between acquisition speed, sensitivity, resolution and sensitivity roll-off performance. We demonstrate: extended imaging range...

متن کامل

Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography.

Ultrahigh-resolution adaptive optics-optical coherence tomography (UHR-AO-OCT) instrumentation allowing monochromatic and chromatic aberration correction was used for volumetric in vivo retinal imaging of various retinal structures including the macula and optic nerve head (ONH). Novel visualization methods that simplify AO-OCT data viewing are presented, and include co-registration of AO-OCT v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011